Problem Statement

- Attackers can attack several network protocols at the same time, in a coordinated and smart way. Cross-layer attacks can:
 - cause larger damage to the network
 - be more difficult to detect
 - create new types of network failures
- Defense:
 - Single layer defense schemes no longer work
 - The defense has to go cross-layer.

Cognitive Radio Networks (CRN)

![Collaborative Spectrum Sensing](image)

Single Layer Attacks in CRN

<table>
<thead>
<tr>
<th>Layer</th>
<th>Attacks in Cognitive Radio Networks</th>
<th>Damage to Primary User</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Layer</td>
<td>Primary User Emulation (PUE)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Reporting False Sensing Data (FSD-TA)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Reporting False Sensing Data (FSD-MD)</td>
<td>X</td>
</tr>
<tr>
<td>MAC Layer</td>
<td>Common Control Channel Denial of Service (CCDoS)</td>
<td>X</td>
</tr>
<tr>
<td>Network Layer</td>
<td>Routing towards Primary User (RPU)</td>
<td>X</td>
</tr>
<tr>
<td>Layers Above</td>
<td>Traditional Attacks</td>
<td>Depends</td>
</tr>
</tbody>
</table>

Physical Layer Defense against RFSD Attack

- Step 1: For node j, perform Neyman-Pearson test using reports from other (N-1) nodes to detect presence of primary user.
- Step 2: Based on test result of step 1, perform Neyman-Pearson test 2 to see if node j is lying or not.
- Step 3: Determine the physical layer trust value based on the binary observations of the node behavior (lying or not).

MAC Layer Defense against SBW Attack

![MAC layer back-off mechanism](image)

Defense Scheme

- Deduce the distribution of back-off window size
- Observe the actual back-off window size
- Evaluate the difference of the two distributions

Cross Layer Attack

- Conduct RFSD attack with probability \(P_1 \) in PHY layer
- Conduct SBW attack with probability \(P_2 \) in MAC layer
- There exists an optimal \(P_1 \) and \(P_2 \) so that single layer defense can not detect the malicious user

Cross Layer Defense

- Deduce the distribution of back-off window size
- Observe the actual back-off window size
- Evaluate the difference of the two distributions

Simulation Results

![Simulation Results](image)

Impact

- Demonstrated the damage of cross-layer attacks;
- Effectively secured cognitive radio networks;
- Proposed a generic cross layer defense framework that can be applied to many other networks.