Trust Sensor Interface for Improving Reliability of EMG-based User Intent Recognition

Yuhong Liu, Yan Sun
Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island

Problem Statement

- **Objective**
 - To develop a trustworthy neural-machine interface (NMI) that accurately interprets the user’s intended movements for neural control of artificial legs.

Challenges

- Diverse disturbances may:
 - Distort the recorded Electromyographic (EMG) signals
 - Cause sensor failure
 - Lead to errors in user intent identification
 - Cause tumbles/falls of the amputees

Key Components of Trust Evaluation Interface

- **Abnormal Detector**
 - Detect diverse disturbances

- **Sensor Trust Evaluation**
 - Evaluate trustworthiness of EMG sensors based on their “disturbance history”.

- **System Trust Evaluation (Future Work)**
 - Evaluate reliability of NMI system

Performance

Trust Evaluation Interface Demonstration for Subject Sitting and Standing

- Sit(no disturbance)
- Sit(disturbance)
- Stand(no disturbance)
- Stand(disturbance)

Demonstration of Abnormal Detector and Sensor Trust Evaluation

- **EMG Signal with Unrecoverable Disturbance (Loss of Contact)**
 - **Loss of Contact**
 - **Data Sample Detection Result**
 - **Sliding Window Trust Value**

- **EMG Signal with Recoverable Disturbances (Motion Artifacts and Baseline Noise)**
 - **Detection Results**
 - **Threshold Detection Delay**
 - **Sliding Window Trust Value**

Impact

- **A trust sensor interface (TSI) addresses disturbances from a new angle:**
 - Detect disturbances
 - Evaluate EMG sensor reliability based on its “disturbance history”
 - Help NMI system to dynamically adjust its operations.

- **TSI demonstrates a great potential in:**
 - Improving the reliability of deciphering user intent
 - Improving the safety of amputees.

Research sponsored by the National Science Foundation